# 1-Naphthaleneacetic Acid* 

By S. S. Rajan<br>Department of Crystallography and Biophysics, University of Madras, Guindy Campus, Madras 600025, India

(Received 21 September 1977; accepted 8 November 1977)


#### Abstract

C}_{12} \mathrm{H}_{10} \mathrm{O}_{2}\) is monoclinic, $P 2_{1} / c$ with $a=$ 12.705 (6), $b=5.146$ (2), $c=15.015$ (7) $\AA, \beta=$ $92.00(10)^{\circ}, V=981.7 \AA^{3}, Z=4, D_{m}=1.263, D_{c}=$ $1.262 \mathrm{~g} \mathrm{~cm}^{-3}, M_{r}=186$. The structure was solved by direct methods and refined to an $R$ factor of 0.129 for 776 observed reflections. The structure is stabilized by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. The molecules exist as dimers.


Introduction. The lattice parameters of the title compound were determined with rotation and Weissenberg photographs, and later refined, with the $2 \theta$ values for 32 reflections obtained with the Picker diffractometer available in this laboratory, by use of the least-squares program of Main \& Woolfson (1963). Threedimensional intensity data for 776 reflections were collected by the multiple-film equi-inclination Weissenberg technique with $\mathrm{Cu} K 几$ radiation and were estimated visually by comparison with a standard set of spots prepared with the same crystal. These were then corrected for Lorentz, polarization and spot-shape factors (Phillips, 1954). The data collected about the two axes ( $a$ and $b$ ) were correlated (Rollett \& Sparks, 1960). As $\mu t \simeq 0 \cdot 28$, no absorption correction was applied.

The structure was solved by direct methods with the multisolution technique of Germain, Main \& Woolfson (1971), with the computer program available on the IBM 370/155 at the Indian Institute of Technology, Madras. All the non-hydrogen atoms of the molecule were located in the subsequent Fourier map. The initial $R$ factor with all the non-hydrogen atoms was 0.46 . Successive block-diagonal least-squares refinement of these atoms (Shiono, 1968) with isotropic temperature factors, followed by three cycles of anisotropic refinement, reduced the $R$ factor to $0 \cdot 15$. A difference Fourier map revealed all ten H atoms. Two cycles of full-matrix refinement (Gantzel, Sparks \& Trueblood, 1961) of the non-hydrogen atoms, with H atoms included only in the structure factor calculation, reduced the $R$ factor to $0 \cdot 129$. The weighting scheme of Cruickshank, Bujosa, Lovell \& Truter (1961), i.e. $w=$ $\left(a+\left|F_{o}\right|+b\left|F_{o}\right|^{2}\right)^{-1}$ with $a=2.0$ and $b=0.033$, was

* Contribution No. 469 from the Department of Crystallography and Biophysics.
used. The scattering factors were taken from International Tables for X-ray Crystallography (1962). The final positional parameters of the non-hydrogen atoms are given in Table 1, $\dagger$ while Table 2 gives the positions of the H atoms located from the difference Fourier map.

[^0]Table 1. Fractional atomic coordinates $\left(\times 10^{4}\right)$ of non-hydrogen atoms
Standard deviations given in parentheses refer to the least significant digit.

|  | $x$ | $y$ | $z$ |
| :--- | :--- | ---: | :--- |
|  |  | $y$ |  |
| C(1) | $7214(7)$ | $1104(14)$ | $6935(5)$ |
| C(2) | $8051(7)$ | $-414(15)$ | $7274(5)$ |
| C(3) | $8456(7)$ | $-67(20)$ | $8149(6)$ |
| C(4) | $7969(10)$ | $1741(24)$ | $8697(6)$ |
| C(5) | $7187(10)$ | $3253(19)$ | $8388(7)$ |
| C(6) | $6783(8)$ | $3040(16)$ | $7514(6)$ |
| C(7) | $5917(10)$ | $4567(22)$ | $7171(9)$ |
| C(8) | $5543(10)$ | $4191(27)$ | $6317(10)$ |
| C(9) | $5962(10)$ | $2346(25)$ | $5741(8)$ |
| C(10) | $6771(9)$ | $752(19)$ | $6043(6)$ |
| C(11) | $8540(7)$ | $-2483(14)$ | $6670(5)$ |
| C(12) | $9170(7)$ | $-1310(15)$ | $5941(5)$ |
| O(1) | $9550(5)$ | $846(12)$ | $5994(4)$ |
| O(2) | $9304(5)$ | $-2829(11)$ | $5289(4)$ |

Table 2. Positional $\left(\times 10^{3}\right)$ and thermal parameters of hydrogen atoms as obtained from the difference electron density map

|  | Bonded to | $x$ | $y$ | $z$ | $B\left(\AA^{2}\right)$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| $\mathrm{H}(1)$ | $\mathrm{C}(3)$ | 946 | -28 | 833 | 6.7 |
| $\mathrm{H}(2)$ | $\mathrm{C}(4)$ | 825 | 167 | 925 | $6 \cdot 3$ |
| $\mathrm{H}(3)$ | $\mathrm{C}(5)$ | 661 | 483 | 872 | $6 \cdot 2$ |
| $\mathrm{H}(4)$ | $\mathrm{C}(7)$ | 553 | 633 | 764 | $5 \cdot 5$ |
| $\mathrm{H}(5)$ | $\mathrm{C}(8)$ | 475 | 567 | 625 | 6.7 |
| $\mathrm{H}(6)$ | $\mathrm{C}(9)$ | 539 | 83 | 570 | 7.7 |
| $\mathrm{H}(7)$ | $\mathrm{C}(10)$ | 716 | -95 | 563 | 5.9 |
| $\mathrm{H}(8)$ | $\mathrm{C}(11)$ | 786 | -367 | 642 | 4.8 |
| $\mathrm{H}(9)$ | $\mathrm{C}(11)$ | 960 | -317 | 700 | $4 \cdot 8$ |
| $\mathrm{H}(10)$ | $\mathrm{O}(2)$ | 981 | -150 | 497 | 5.9 |

Table 3. Hydrogen-bond lengths ( $\AA$ ) and angles $\left({ }^{\circ}\right)$
Symmetry code: (i) $2-x, 1-y, 1-z$.


Fig. 1. Bond lengths $(\AA)$ and bond angles $\left(^{\circ}\right)$ observed in I-naphthaleneacetic acid. Estimated standard deviations are given in parentheses for the last digit quoted.


Fig. 2. Packing of the molecules viewed down $\mathbf{b}$.

Table 4. Least-squares planes and deviations ( $\AA$ ) of atoms from them

Equation of the plane: $A X+B Y+C Z=D$ with respect to the crystallographic axes $a, b$ and $c$ where $X, Y, Z$ and $D$ are in $\AA$.

| Naphthalene group: | $0.6609 X+$ | $0.6800 Y-0.3172 Z=2.8938$ |  |
| :---: | ---: | :---: | :---: |
| C(1) | 0.008 | $\mathrm{C}(8)$ | 0.002 |
| $\mathrm{C}(2)$ | 0.008 | $\mathrm{C}(9)$ | 0.002 |
| $\mathrm{C}(3)$ | 0.022 | $\mathrm{C}(10)$ | -0.031 |
| $\mathrm{C}(4)$ | -0.033 | $\mathrm{C}(11)$ | 0.003 |
| $\mathrm{C}(5)$ | -0.033 | $\mathrm{C}(12)^{*}$ | 1.311 |
| $\mathrm{C}(6)$ | 0.013 | $\mathrm{O}(1)^{*}$ | 2.361 |
| $\mathrm{C}(7)$ | 0.011 | $\mathrm{O}(2)^{*}$ | 1.229 |

Carboxyl group: $-0.8180 X+0.3667 Y-0.4430 Z=-13.4898$

| $C(11)$ | -0.003 | $O(1)$ | 0.004 |
| :--- | ---: | ---: | ---: |
| $\mathrm{C}(12)$ | 0.012 | $\mathrm{O}(2)$ | 0.004 |

* Atom not included in plane calculation.

Discussion. The bond lengths and angles obtained for the molecule are as shown in Fig. 1 and are close to the normal values. $\mathrm{O}\left(\mathrm{I}^{\mathrm{i}}\right)$ accepts a proton from $\mathrm{O}(2)$ and forms a hydrogen bond. The hydrogen bond lengths and angles obtained are in Table 3.

The least-squares planes passing through (1) the atoms in the naphthalene ring and $\mathrm{C}(11)$ and (2) the
atoms in the carboxyl plane, are given in Table 4 along with the deviations of individual atoms from the planes. The angle between the two planes is found to be $97.8^{\circ}$.

The molecular packing seen down $\mathbf{b}$ is shown in Fig. 2. The molecules, as in other plant-growth hormones (Swaminathan, Vijayalakshmi \& Srinivasan, 1976; Karle, Britts \& Gum, 1964), exist as dimers. Hydrogen bonds between the acid groups form across the centre of symmetry and are in parallel planes.

The author wishes to express his thanks to Professor R. Srinivasan for helpful discussions.

## References

Cruickshank, D. W. J., Bujosa, A., Lovell, F. M. \& Truter, M. R. (1961). Computing Methods and the Phase Problem in X-ray Crystal Analysis. edited by R. Pepinsky, J. M. Robertson \& J. C. Speakman, p. 32. Oxford: Pergamon Press.

Gantzel, P. K., Sparks, R. A. \& Trueblood, K. N. (1961). Program UCLALS 1. Univ. of California.

Germain, G., Main, P. \& Woolfson, M. M. (1971). Acta Cryst. A27, 368-376.
International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.

Karle, I. L., Britts, K. \& Gum, P. (1964). Acta Cryst. 17, 496-499.
Main, P. \& Woolfson, M. M. (1963). Acta Cryst. 16, 731733.

Phillips, D. C. (1954). Acta Cryst. 7, 746-751.
Rollett, J. S. \& Sparks, R. A. (1960). Acta Cryst. 13, 273-274.
Shiono, R. (1968). Block diagonal least-squares program for the IBM 1130. Department of Crystallography, Univ. of Pittsburgh.
Swaminathan, P., Vijayalakshmi, J. \& Srinivasan, R. (1976). Acta Cryst. B32, 2351-2354.

Acta Cryst. (1978). B34, 1000-1002

# 2-Methyl-2,2'-spirobi(1,3,2-benzodioxaarsole) 

By Hartmut Wunderlich<br>Institut für Anorganische Chemie und Strukturchemie, Universität Düsseldorf, Universitätsstrasse 1, 4000 Düsseldorf, Federal Republic of Germany

(Received 26 October 1977; accepted 12 November 1977)


#### Abstract

C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right)_{2} \mathrm{AsCH}_{3}\), orthorhombic, Pca $2_{1} ; a=$ 18.086 (2), $\quad b=8.294$ (1),$\quad c=8.229$ (1) $\AA . \quad M_{r}=$ $306 \cdot 1, Z=4, D_{x}=1.65 \mathrm{~g} \mathrm{~cm}^{-3}, \mu($ Mo $K a)=29.1$ $\mathrm{cm}^{-1}$. The structure was refined to $R=0.05$. The geometry of the pentacoordinate As atom can be described as a $74 \%$ rectangular pyramid with the methyl group in apical position. The molecule contains trans-basal angles $\mathrm{O}-\mathrm{As}-\mathrm{O}$ of $158 \cdot 6$ and $143 \cdot 1^{\circ}$ and apical-basal angles $\mathrm{C}-\mathrm{As}-\mathrm{O}$ of $108 \cdot 6,108 \cdot 3,100 \cdot 2$ and $101 \cdot 1^{\circ}$.

Introduction. The compound was synthesized by Wieber, Eichhorn \& Götz (1973) and recrystallized from $\mathrm{CS}_{2}$. Photographs showed systematic absences 0 kl for $l$ odd and $h 0 l$ for $h$ odd indicative of the space groups Pcam (conventional setting: Pbcm) and Pca2 ${ }_{1}$. A comparison with the volume of the molecule of the corresponding phosphorane (Wunderlich, 1974) yielded $Z=4$. The assumption of no crystallographic symmetry of the molecule reduces the alternative to the noncentrosymmetric space group Pca2, which was later supported by the statistics of the $E$ values. The


intensities of all 1528 symmetry-independent reflections up to $2 \theta=55^{\circ}$ were collected on a computer-controlled diffractometer (Syntex $P 2_{1}$ ) in a $\theta: 2 \theta$ scan mode with Mo $K_{\prime}$ r radiation and a crystal monochromator. 1141 reflections were classified as observed ( $F_{o} \geq 3 \sigma_{F}$ ). The structure was solved by the heavy-atom method. All H atoms except those of the methyl group could be located from a difference synthesis. The final refinement with fixed (H) and anisotropic (As, O and C) temperature factors converged at $R=0.050(0.074)$ and $R_{w}=0.046(0.049)$ for the observed (all) reflections. Weights were derived from counter statistics by $1 / w=\sigma_{F}^{2}+\left(0 \cdot 02 F_{o}\right)^{2}$; scattering factors were taken from Cromer \& Waber (1974). The final atomic parameters are given in Tables 1 and 2.* All calculations were carried out on a Nova 1200 computer with the program system $X T L$ (Syntex).

[^1]
[^0]:    $\dagger$ Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 33169 (11 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CHI INZ, England.

[^1]:    * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 33170 ( 7 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CHI 1NZ, England.

